[image: image1.wmf]

Goldsoft DB Builder

Instructions for use

Copyright: Hockley Computer Services 01 January 2002

Contents

It is assumed that the user has completed the Goldsoft Tutorials Part One and Two.

If you have NOT completed the tutorials then unzip Goldsoft_doco.zip for reference.

To install Goldsoft see the document Install Goldsoft.doc
General user functions

1 Naming conventions used

1.1 Folder structure

1.2 Databases

1.2.1 Front-end

1.2.2 Back-end

1.2.3 Tables

1.2.4 Forms

1.2.5 Queries

1.2.6 Reports

1.3 Variables

1.3.1 Globals

1.3.2 Disposable variables

2 Raw_t.mdb - the back-end

2.1 Purpose of the Raw_t.mdb

2.2 Fixed tables in the Raw_t.mdb

2.3 Creating a new back-end from the Raw_t.mdb

3 Raw.mdb - the front-end

3.1 Purpose of the Raw.mdb

3.2 Components of the Raw.mdb

3.3 Customising the Raw.mdb to your look and feel

3.4 Creating a new front-end from the Raw.mdb

4 Goldsoft_raw.mdb - the DB builder

4.1 Purpose of the Goldsoft_raw.mdb

4.2 Components of the Goldsoft_raw.mdb

4.3 Customising the Goldsoft_raw.mdb to your look and feel

4.4 Creating a new DB builder from the Goldsoft_raw.mdb

5 Creating a Goldsoft "module" using Goldsoft_raw.mdb

5.1 Creating the table

5.2 Creating the objects

5.3 Creating the code

5.4 Importing the objects to the front-end

5.5 Modifying the form layout

5.6 Modifying the form code

5.7 Modifying the report

6 Calling Forms

7 Sub Forms

8 Speed up slow Forms

9 Using a Filter Form

10 Tick sheet - create a Standard Form using Goldsoft

11 Tick sheet - create a Calling Form using Goldsoft

12 Tick sheet - create a Sub Form using Goldsoft
How it all works

13 The logon form

14 The Main Menu form

15 Buttons and Controls on the Main Menu

16 Buttons - A Typical Goldsoft "module"

16.1 Process

16.2 To add a new record

16.3 To edit an existing record

16.4 To delete an existing record

16.5 Searching for records

16.6 Printing the report
Report writing

17 The Reports form
1 Naming Conventions

Contents
Goldsoft uses a simple to follow naming convention. All singular, lower case with no spaces (use underscores). Any programmer supporting a database built with Goldsoft can expect the following:

1.1 Folder structure - there should be three sub folders under the main folder

e.g. for a client contact application you would have the structure

my_server

client_contact

development

test

production

Goldsoft uses the keywords development, test and production to identify whether the front-end is connected to the correct back-end and to set the background colour of the Main Menu.

1.2 Databases

1.2.1 Front-end - no strict rule here but the name should reflect the task the database handles e.g. client_contact.mdb

1.2.2 Back-end - the back-end name should be the same as the front-end name with a suffix of _t e.g. client_contact_t.mdb

1.2.3 Tables - the name must start with the prefix t_ and should indicate what the table holds e.g. t_client (holds client information)

1.2.4 Forms - the name must start with the prefix f_ and should indicate what the form does e.g. f_client (allows user to add, edit or delete clients)

1.2.5 Queries - the name must start with the prefix q_ and should indicate what the query does e.g. q_client (delivers one or more client records from the table t_client)

1.2.6 Reports - the name must start with the prefix r_ and should indicate what the report delivers e.g. r_client (one or more client records from the query q_client)

1.3 Variables

1.3.1 Globals are preferred to locals - all singular, lower case with no spaces (use underscores)

1.3.2 Disposable variables - variable names starting with the word hold are disposables - they can be used over and over and should only last for a few lines of code - e.g. hold_crit might be used to hold an SQL statement to open a recordset on a particular table - once the recordset is open you can use hold_crit to hold another SQL statement for the next recordset and so on

2 Raw_t.mdb - the back-end

Contents
2.1 Purpose of the Raw_t.mdb

Raw_t.mdb is the database which forms the basis for the back-ends you will create.

2.2 Fixed tables in the Raw_t.mdb

There are three fixed tables in the Raw_t.mdb to accommodate the "administration" functions of the front-end - t_button, t_user and t_user_level - each of these tables has an audit trail table. For example the table t_button has t_button_del as its audit trail table. All audit trail tables have the same name as the original table with the suffix _del.

When a user edits or deletes a record via a form the audit trail table is updated. This audit trail can be a last entry type or all entries type giving us a before and after snapshot of each record.

Do not alter the format of these tables. The tables of a Goldsoft database are "clean" - no formatting of fields, input masks or relationships between tables - that way a Goldsoft database can attach to any outside table source without issue.

2.3 Creating a new back-end from the Raw_t.mdb

To create a new back-end from the Raw_t.mdb follow these steps:

· Create the main folder which will hold the application you are about to build - say Q:\client_contact\
· Create three folders under the main folder - development, test and production
· Copy the Raw_t.mdb into the development folder - Q:\client_contact\development\
· Rename Raw_t.mdb to - Q:\client_contact\development\client_contact_t.mdb
· Remove the Read Only property from the client_contact_t.mdb
· Open the database client_contact_t.mdb
· Compact and repair client_contact_t.mdb
The new back-end client_contact_t.mdb has been created

3 Raw.mdb - the front-end

Contents
3.1 Purpose of the Raw.mdb

Raw.mdb is the database which forms the basis for the front-ends you will create.

3.2 Components of the Raw.mdb

· m_vars - module that holds all the global variables and a few basic procedures

· m_general - module that holds the basic procedures which are required for day to day building of databases

· autoexe - macro that hides the database window and opens form f_logon - this macro should be changed to autoexec once the new database is created so that it loads the form f_logon automatically

· Seven f_help_... forms - these are basic help screens which will pop up when the user clicks on the Help me button on most screens.

· The form f_filter_simple - this is a filter template used to create new filters

· The form f_logon - allows the user to enter the system with basic validation

· The form f_menu - this is the central form of the database

· The form f_report - form to run various reports from

· The form hockley - this is the form template rarely used to create a new form manually (without using Goldsoft)

· The report r_n - this is the report template used to create a new report manually (without using Goldsoft)

· The query q_id_blank - use this as a rowsource to speed up the loading of forms

· The Goldsoft "module" button - enables or disables buttons according to the permission level of the logged on user - it consists of the forms f_button and f_filter_button, the queries q_button and q_button_report, the report r_button and the attached tables t_button and t_button_del

· The Goldsoft "module" user - allows the administrator to add, edit or delete users - the "module" consists of the form f_user, the query q_user, the report r_user and the attached tables t_user and t_user_del

· The Goldsoft "module" user_level - allows the administrator to add, edit or delete permission levels - the "module" consists of the form f_user_level, the query q_user_level, the report r_user_level and the attached tables t_user_level and t_user_level_del

3.3 Customising the Raw.mdb to your look and feel

Raw.mdb is the front-end template database. All your future database front-ends will be modelled on Raw.mdb. The current look and feel is designed conservatively for the financial services industry.

Once you have customised Raw.mdb it is suggested that the Raw.mdb front-end template is stored as a Read Only file.
It is recommended that you do NOT delete controls from the forms and that you do NOT alter the VBA code - other programmers who may support your DB in the future will be expecting the standard Goldsoft controls and code.

The following components can be altered:

· The seven help forms f_help_... - these are generic help forms and can be altered at will - check the code in the b_help button on the f_button form and the code in the f_basic_help form before making changes.

· The forms f_filter_simple - this is the filter form template - alter the form layout at will - do NOT alter the VBA code.

· The forms f_button, f_filter_button, f_logon, f_menu, f_user, f_user_level, hockley - these are the basic "administration" forms of the Raw.mdb - alter the layout of the forms at will - do NOT alter the VBA code.

· The reports r_button, r_n, r_user, r_user_level - these are the basic "administration" reports of the Raw.mdb - alter the layout of the reports at will - do NOT alter the VBA code.

3.4 Creating a new front-end from the Raw.mdb

Once you have altered the look and feel of the Raw.mdb to suit yourself you can create a new front-end from the Raw.mdb by following these steps:

· Select the folder where you created the new back-end Q:\client_contact\development\
· Copy the Raw.mdb into the development folder - Q:\client_contact\development\
· Rename the Raw.mdb - say Q:\client_contact\development\client_contact.mdb
· Remove the Read Only property from the client_contact.mdb
· Open the database client_contact.mdb
· Compact and repair client_contact.mdb
· Ensure the References are all valid when in the VBA code window

· Open the table t_owner and alter the three paths to the new back-end location e.g. C:\goldsoft\development\raw_t.mdb to Q:\client_contact\development\client_contact_t.mdb
· Open the form f_logon and logon by using the user name tempmsa and password password - click on the button Attach tables to attach to the tables in t_table_name

· The new front-end client_contact.mdb has been created and attached to tables in the back-end

4 Goldsoft_raw.mdb - the DB builder

Contents
4.1 Purpose of the Goldsoft_raw.mdb

The Goldsoft_raw.mdb is used to create Goldsoft "modules" which can be imported into a Goldsoft front-end. Each Goldsoft module consists of a form, VBA code for the form, a query and a report.

The user creates a table design using Goldsoft_raw.mdb. From that design Goldsoft_raw.mdb then creates all of the objects for the new "module" - ready for import into a Goldsoft front-end database.

4.2 Components of the Goldsoft_raw.mdb

· m_vars - module that holds all the global variables and a few basic procedures

· m_general - module that holds the basic procedures which are required for day to day building of databases

· The forms f_menu, f_field, f_table - these forms are the user interface to building a table design, the components and the code for a Goldsoft module

· The form f_empty - this is the form template used by Goldsoft_raw.mdb to create a new form from a table design

· The report r_empty - this is the report template used by Goldsoft_raw.mdb to create a new report from a table design

· The query q_empty - this is the query template used by Goldsoft_raw.mdb to create a new query from a table design

4.3 Customising the Goldsoft_raw.mdb to your look and feel

Goldsoft_raw.mdb uses f_empty and r_empty to make forms and reports which can be imported into Goldsoft front-ends. The current look and feel of these two components is designed conservatively for the financial services industry.

Once you have customised the Goldsoft_raw.mdb it is suggested that the Goldsoft_raw.mdb DB builder is stored as a Read Only file.
It is recommended that you do NOT delete controls from the forms and that you do NOT alter the VBA code - other programmers who may support your DB in the future will be expecting the standard Goldsoft controls and code.

The following components can be altered:

· The form f_empty - alter the form layout at will

· The report r_empty - alter the layout of the report at will

4.4 Creating a new DB builder from the Goldsoft_raw.mdb
Once you have altered the look and feel of the Goldsoft_raw.mdb to suit yourself you can create a new DB builder by following these steps - the client contact database is used as the example
· Select and copy the Goldsoft_raw.mdb

· Select the folder where you created the new front_end Q:\client_contact\development\
· Paste the Goldsoft_raw.mdb into the development folder - Q:\client_contact\development\
· Rename the Goldsoft_raw.mdb database to - Q:\client_contact\development\Goldsoft_client_contact.mdb
· Remove the Read Only property from the Goldsoft_client_contact.mdb
· Open the database Goldsoft_client_contact.mdb
· Compact and repair Goldsoft_client_contact.mdb
· Ensure the References are all valid when in the VBA code window

· Ensure there is a folder to hold the code which the Goldsoft DB builder will create - in this case it will be Q:\client_contact\code\
· Open the table t_owner - in the code_path field type the path to hold the code files Q:\client_contact\code\ - close the table t_owner

· Open the form f_menu - (you can make f_menu the startup form if you wish to save this step)

· Change the Project name to Client Contact (or the company/project name)

· Change the Backend path to Q:\client_contact\development\client_contact_t.mdb
· Click on the Update changes button to save these changes.

The new DB builder Goldsoft_client_contact.mdb has been created

5 Creating a Goldsoft "module" using Goldsoft_raw.mdb Contents
It is assumed that the user has completed the Goldsoft Tutorials Part One and Two.

Open the database Q:\client_contact\development\Goldsoft_client_contact.mdb

Open the Main Menu

5.1 Creating the table

Good table design is the cornerstone of any good database.

If your table uses Combo Boxes or List Boxes make sure you create the tables they depend on first e.g. the table t_state must exist before creating a state_id field in the table t_client.

Create the new table via the Add new button in the Tables section - the naming convention is t_client (all lower case, no spaces)

The client_ID and the CU fields will be created automatically - every table has to have these two as the first two fields.

Add the fields for the table via the Add / Edit button in the Fields section

If you feel extra fields may be required for the table in the future then add the fields now. You can add say two or three text fields, two number fields and two date fields if you feel the client may require extras later on. Add these fields last - you can simply call them extra_1, extra_2 etc.

The "extra" fields can be hidden on screen or removed from the DB at a later stage if they are not required. It is easier to remove a field than to add one - adding a field is not difficult it simply takes longer.

5.2 Creating the objects

Once you are happy with the table design select the table name and click on the button Create all objects for a table (assume the table is called t_client)

The following will be created in Goldsoft_client_contact.mdb: the form f_client, the query q_client, the report r_client - all based on the design of table t_client.

When you create the database objects you will notice two extra fields have been added to your table design at the end - input_by and input_on - every table has to have these as the last two fields - they simply record who last edited the record and when - this allows for an audit trail on every table if required.

The tables t_client and t_client_del will be copied into the back-end DB.

5.3 Creating the code

Select the table name and click on the button Create code

The code will be created and written to a text file called code_for_f_client.cde. This file will be written to the path as recorded in the code_path field of the table t_owner - in this case Q:\client_contact\code\

The code will be created according to the design of table t_client

5.4 Importing the objects to the front-end

· Open your front-end database which you created in 3.4

· Write the table name t_client into the table t_table_name as a new record

· It is assumed the form f_client will be called from the Main Menu - if this is not the case then see the section on Calling Forms. Open the form f_menu in design mode - create a button and name it (b and the next available button number e.g. b9) - alter the caption to read Clients - alter the control tip text to read f_menu b9 where f_menu is the form the button is on and b9 is the button name

· Create the GotFocus and LostFocus events for the button - copy the code from another button if they do not appear by default

· Create the OnClick event for the button by copying the code from an existing button say b3 - alter the code to suit the button (in this case alter sub_form = "f_user" to sub_form = "f_client" and alter t_sub = "t_user" to t_sub = "t_client")

· Open f_logon and logon using tempmsa and password
· On the Main Menu click on the button attach tables to attach to the new tables t_client and t_client_del which are in the back-end

· If the new button is to be used only by users with a certain permission level then click on the Buttons button and add the new restriction record (the button will be disabled to users who do not have that permission level)

· Close the Main Menu by clicking on the hidden button (below the G of Goldsoft) then press function key F11
· Import from the Goldsoft_client_contact.mdb the three objects q_client, f_client and r_client

5.5 Modifying the form layout

· Open the form f_client in design mode
· Alter the Form Caption
· Layout the controls on the form to suit
· Set the Tab Order of the controls
5.6 Modifying the form code

· Open the VBA window (View, Code) - import the text file (Insert, File, All files) Q:\client_contact\code_for_f_client.cde

· Close the VBA window
· Check the LostFocus event for limitations on number fields - e.g. percentages must be >= zero and <= 100 etc

· Check the GotFocus and OnClick events for Combo Box fields - ensure that is what you want to happen when the field gets the focus and is clicked

· Alter the RowSource of the Combo Boxes and List Boxes now if you are dealing with tables that will hold large amounts of data (see Speed up slow Forms)

· Alter the Search button On Click code (b_filter)
1. if no search is required then un-rem the two lines near the top of the Click event code
2. if a filter is to be used for searching (see Using a Filter Form) then un-rem the two lines (DoCmd.OpenForm "f_filter_client" and Exit Sub)
3. if a simple search is required then modify the code inside the "While curr_selected < num_in_list..." loop

4. If you are using a Filter Form then un-rem the ten lines at the top of the b_report button Click event - also make a copy of the query q_client and paste it as q_client_report (q_client will deliver all records while q_client_report will only deliver the records which are filtered) - set the Record Source property of the report r_client to q_client_report
· Open the VBA code window

· Use Ctrl-F to search for the words "is unique" - this code avoids duplicate record entries and may need to be altered - e.g. the client name may need to be unique or a combination of fields say first_name, surname and date_of_birth could be the test - or there may be no test required at all (in that case delete or rem the code out)

· Use Ctrl-F to search for the words deleted safely - this code will stop records being deleted if there are entries in other tables - e.g. if the client_id from the table t_client is stored in the table t_order then you will not be able to delete the record in t_client until the record in t_order is deleted - there are fourteen lines to be un-remmed - you may have to duplicate this code for any other tables to be tested
· Select the check_fields procedure - alter any of the tests according to any special conditions - e.g. if field_1 has a value of "yes" then field_2 needs to be populated

· Compile the code (Debug, Compile) - close the VBA window

· Ensure the query which is the rowsource for lb_show is complete and working - Goldsoft creates the query according to the table design - if there are Combo Boxes then Goldsoft will add the fields into the query - however Goldsoft will not make the table joins - this is left up to the user - add any required tables to the design of the query then make the required joins

· Set the column sizes of lb_show according to the query

· If you have altered the query then check that the populate_controls procedure matches up with query fields - e.g. if you have deleted a field from the query the populate_controls procedure will need to be changed accordingly

· Alter the b_report caption if it is not correct

· Close the form and save the changes

5.7 Modifying the report

· Open the report r_client in design mode

· Alter the report caption

· If you are using a filter form then you will need to set the Control Source of the report to r_client_report (which is simply a copy of r_client)

· Goldsoft only puts the first field on the report - add fields, headers and footers at will

· Un-rem the PageHeader0_Format code if you need to display the from date and to date controls

· Ensure the Sort Order is correct

6 Calling Forms

Contents
In general terms the name of the current form which is open is assigned to the variable curr_form.

A calling form is a form other than the Main Menu which calls a sub form. For example the form f_client may hold all the client details. Since there are multiple contacts for each client another form f_client_contact will be required to edit the contact details. F_client is the calling form and f_client_contact is the sub form. Both are created in the identical way when using Goldsoft. The calling form requires some light fine tuning - the sub form requires more work.

There is a global variable named called_from. This variable keeps track of where the user is and how they got there. When a button on the Main Menu calls the form f_client you set called_from to menu. If a button on the form f_client calls the form f_client_contact then you set called_from to menu_client (you got there by first going to f_menu and then to f_client). When you close f_client_contact using button b_close you set called_from back to menu - this shows the program the way back to the original calling form. A sub form can be called from more than one calling form so called_from keeps track of which form called which.

On each of the forms you have created by using Goldsoft you will find a button called b101 (Call sub form). This is the button which calls other forms. You will notice the On Click event code is almost identical to the calling buttons on the Main Menu.

To activate the button you need to:

· change the caption of the calling button

· in the On Click event code - change the called_from variable to identify how you got to that point (say menu_client)

· do a search and replace for the words "calls a sub" and unrem the line under each instance (five in all) - this will allow the button b101 to be visible when required
When you select a client record the button b101 will appear ready to call a sub form

If you have a need to call another form from f_client the do the following:

· copy and paste the button b101 to b102
· copy and paste the GotFocus, LostFocus and On Click events from b101 to b102 - alter the code each time you paste to suit the new button
· search for the words "b101.visible" in the code - each time you find an instance (should be five in all) copy and paste the line of code to add a new code line (change the new line to read b102... instead of b101...etc) - this will allow the button b102 to be visible when required
7 Sub Forms

Contents
In general terms the name of the current form which is open is assigned to the variable curr_form.

A sub form is a form which has been called by a form other than the Main Menu. For example the form f_client_contact will be called from the form f_client. F_client is the calling form and f_client_contact is the sub form. Both are created in the identical way when using Goldsoft.

When a sub form opens a number of changes need to take place in the code:

· Alter the caption on button b_close
· Remove the client_id = Null line from the controls_null procedure

· Do a search and replace for the words "is a sub" and alter as follows (using the example of f_client as the calling form and f_client_contact as the sub form)

· In the On Click of button b_report - un-rem and change

Forms!f_main.Visible = False to Forms!f_client.Visible = False

· In the On Click event of button b_close - un-rem and change

If called_from = "somewhere" Then ("menu")

 sub_form = "f_main" ("f_client")

 t_sub = "t_main" ("t_client")

 Forms!f_main.Visible = True (f_client)

 from_where = old_from_where

 set curr_form = Forms!f_main (f_client)

 (the next three lines are optional to change OK to leave them remmed out)

 'If from_where = "view" Then Forms!f_main!lb_show.SetFocus

 'If from_where <> "view" Then Forms!f_main!main_field.SetFocus

 'Forms!f_main_form!lb_some_list.Requery

End If

· In the On Click event of button b_close - rem-out the line

show_menu

· In the Form Open event - un-rem and change

Me.Caption = "Add Edit Delete - For " & Forms!f_main_form!main_name

(Me.Caption = "Add Edit Delete Client Contacts for " &

Forms!f_client!client_name)

Me!main_id = Forms!f_main_form!main_id

(Me!client_id = Forms!f_client!client_id)

If hold_selected_id > 0 Then

 Me!lb_show = hold_selected_id

 lb_show_Click

 Me!lb_show.SetFocus

End If

Me!lb_show.Requery

8 Speed up slow Forms

Contents
One of the major advantages of Unbound forms is speed.

However if an Unbound form has a number of Combo Boxes or List Boxes which access data over a network it may well be slow to open.

If you have a form which opens slowly do the following:

· Replace the RowSource of the Combo Boxes with the query q_id_blank
· Un-rem the code in the Form Open event to fix the RowSource once the form is opened - e.g. In the Open event of the form f_button you will find the code:

Me!user_level_id.RowSource = "q_user_level_id"

Me!user_level_id.ReQuery

· Replace the RowSource of the List Box lb_show with the query q_id_blank
· Un-rem the code in the Form Open event to fix the RowSource once the form is opened - e.g. In the Open event of the form f_button you will find the code:

Me!lb_show.RowSource = "q_button"

Me!lb_show.Requery

This code exists in the Open Form event of all forms created with Goldsoft.

9 Using a Filter Form

Contents
Filter forms allow users to select one or more criteria and thereby restrict the list of records in the lb_show list control on any given form.

Filters do take a bit of setting up. However they are very powerful and users love to be able to control the records selected.

· Copy the f_filter_simple form and paste it as the name of the new filter say f_filter_client (the name should indicate what the filter will do)

· On the form which will call the filter form (in this case f_client) alter the code of the b_filter button as follows - unrem the two lines (DoCmd.OpenForm "f_filter_client" and Exit Sub) - close the form and save

· Open the form f_filter_client in Design mode - there are two text fields, a number field, a date field and a combo box

· The code which creates the SQL statement is in the On Click event of the b_close button - this code is set up according to the 5 fields on the form
· Assume you wish to use fields text_1 and text_2 to search by first name and surname respectively - do the following:
1. select the button b_close - edit the On Click event - alter the code as follows

2. 12 lines down set the lb_show.RowSource to "q_client"

3. on the next line down set hold = the q_client.SQL

4. 15 lines down alter the SQL piece to read "[t_client].[first_name] like '*" & Me!text_1 & "*'" (this uses the wildcard search - to alter to an exact search replace the word like with an = and remove the *)

5. If you wish to alter the field name to first_name then you will need to change the code accordingly - this is a little more work but it makes the code easier to read and debug especially in the future

6. The first search field (in this case text_1) only needs one line of code to refer to it - all other fields require two lines of code

7. In the same way you can change text_2 to search for surname data

8. If you do not require further searches then you can hide the other fields and labels - filters are quite often changed so it is better to hide rather than delete - if you hide the controls you don't need to alter the code which refers to those controls

9. If you wish the search to start as soon as you hit [enter] then alter the code in the On Key Press event of the Form

· If you need a guide then explore the form f_filter_button - you can step through the on click code of the b_close button - this will give you a good understanding of what happens step by step

10 Tick sheet - create a Standard Form using Goldsoft Contents
	Open Goldsoft
	Create the table

Add all the fields

Create all the objects

Create the code

	Open the .MDB
	Write the table name into t_table_name

Create the calling button and control tip text on f_menu

Attach tables

Enter the new button into f_button if restricted

Import the Form, Query and Report from Goldsoft

	Form Design
	Form caption

Import the code

Layout the form

Tab order

Check LostFocus for all fields

Number limitations for Number fields

Clean hold - for Text fields

Check GotFocus and Click events for Combo Box fields

Search button code

If using a filter form

Un-rem the filter code on the search button b_filter

Un-rem the report button code on button b_report

Make Q_NAME_REPORT (a copy of q_name)

Do the "is unique" test

b_save Click – all non mandatory fields are set to null or zero

Check fields – any special conditions ?

Compile code

Fix LB_SHOW column sizes and query

Check the Populate controls procedure

Check the Deleted Safely code

Change the report button caption

	Report Design
	Report caption

If using _REPORT query then set the Record Source of the report to that query

Layout report - add the fields and headers and footers

Sort order

11 Tick sheet - create a Calling Form using Goldsoft

 Contents
	Open Goldsoft
	Create the table

Add all the fields

Create all the objects

Create the code

	Open the .MDB
	Write the table name into t_table_name

Create the calling button and control tip text on f_menu or another calling form

Set the called_from variable to identify the calling form(s)

Copy and paste all the "b101.vis" instances in the calling form code

Attach tables

Enter the new button into f_button if restricted

Import the Form, Query and Report from Goldsoft

	Form Design
	Form caption

Import the code

Layout the form

Tab order

Check LostFocus for all fields

Number limitations for Number fields

Clean hold - for Text fields

Check GotFocus and Click events for Combo Box fields

Search button code

If using a filter form

Un-rem the filter code on the search button b_filter

Un-rem the report button code on button b_report

Make Q_NAME_REPORT (a copy of q_name)

Search for calls a sub and unrem the line following (five in all)

Do the "is unique" test

b_save Click – all non mandatory fields are set to null or zero

Check fields – any special conditions ?

Compile code

Fix LB_SHOW column sizes and query

Check the Populate controls procedure

Check the Deleted Safely code

Change the report button caption

	Report Design
	Report caption

If using _REPORT query then set the Record Source of the report to that query

Layout report - add the fields and headers and footers

Sort order

12 Tick sheet - create a Sub Form using Goldsoft

 Contents
	Open Goldsoft
	Create the table

Add all the fields

Create all the objects

Create the code

	Open the .MDB
	Write the table name into t_table_name

Create the calling button and control tip text on f_menu or another calling form

Set the called_from variable to identify the calling form(s)

Copy and paste all the "b101.vis" instances in the calling form code - five in all
Attach tables

Enter the new button into f_button if restricted

Import the Form, Query and Report from Goldsoft

	Form Design
	Form caption

Import the code

Layout the form

Tab order

Check LostFocus for all fields

Number limitations for Number fields

Clean hold - for Text fields

Check GotFocus and Click events for Combo Box fields

Search button code

If using a filter form

Un-rem the filter code on the search button b_filter

Un-rem the report button code on button b_report

Make Q_NAME_REPORT (a copy of q_name)

Search for is a sub and fix - four instances
Alter the caption on button b_close

Alter the query for lb_show - will depend on an ID value on the main form

Remove the main ID field from the contols_null procedure

Do the "is unique" test - will probably be a combination test
b_save Click – all non mandatory fields are set to null or zero

Check fields – any special conditions ?

Compile code

Fix LB_SHOW column sizes and query

Check the Populate controls procedure

Check the Deleted Safely code

Change the report button caption - the report may not be required

	Report Design
	Report caption

If using _REPORT query then set the Record Source of the report to that query

Layout report - add the fields and headers and footers

Sort order

How does a Goldsoft database work ?

The first section (items 13, 14 and 15) outlines the events which occur from the time the database is opened until the Main Menu is open.
The second section (item 16) has a functional look at the buttons module - once you understand the workings of this typical Goldsoft module you will have a firm grasp of any system built with Goldsoft. This is what makes the support component of Goldsoft databases so simple.
13 The logon form

Contents
The form f_logon is typically opened by the autoexec macro

The Form Open event executes:

· opens the text file logon.txt - the path to this file is in the temp_dir field of table t_owner
· reads the name of the person who last logged on and writes to the on screen field user_name
· waits for the user to enter their password

Once the user enters their password the Key Press event of the form executes when the user presses [enter]
· checks that the user_name and password combination are valid by testing against table t_user - note you can use user_name or logon to do the test - logon is the default but the user_name is handy for signing letters etc

· exits if the user_name and password combination are not valid

· reads the permission level of the logged on user from t_user_level
· saves the user_name in the text file logon.txt in the temp_dir (this records the name of the last user to access the system from the PC or Profile)
· opens the form f_menu
14 The Main Menu form

Contents
The Main Menu is the central hub of any Goldsoft system. The user navigates from the hub to various forms and / or sub forms and then returns to the hub via the same route. This is critical in a multi-user environment. If the form f_client is opened from the Main Menu then when the form f_client is closed focus should go back to the Main Menu. If the form f_client is opened from the form f_orders (which was opened from the Main Menu) then when the form f_client is closed focus should go back to f_orders - when f_orders is closed focus will return to the Main Menu.

Portions of the code are remmed out but are documented as an option.

The form f_logon opens the form f_menu :

The Form Open event executes:

· closes the application if the user opened f_menu directly from the database

· sets the global "carriage return / line feed" variable crlf = Chr(13) & Chr(10) - this will be used in the creation of text files, addresses in Mail Merge etc
· ensures the front-end is connected to the correct back-end (use the button b_attach to attach to the back-end path in t_owner)

· determines the environment the user is in then colours the background of f_menu according to the environment you are in - development, test and production are the three environments supported

· optional check on Lan logon restriction

· allocates a user_number to the user for this session only - this code is necessary to restrict the number of concurrent users to 50

· establish the path to the back-end database

· uses this path as the record locking path

· sets f_menu as the curr_form

· runs the show_buttons procedure - this disables any buttons on f_menu which the user does not have permission to use - see the Buttons feature on the Main Menu

15 Buttons and Controls on the Main Menu

Contents
· b2 - the On Click event of this transparent button will remove the user name from t_user_logged_on and close the form f_menu (press function key F11 to show the database window if it is not visible)

· b50 - the On Click event of this transparent button will make all reports pop up and modal - use this feature only if you are using 2002 or higher - making the reports pop up and modal gives the developer control of the screen when a report is previewed - the user has various options by right clicking on the report

· b1 - the On Click event of this button is ready to be edited to open a Goldsoft created form
· b3 - System users - the On Click event of this button opens the form f_user on data from the table t_user to allow the user to add, edit or delete the system users - usually an administrator function

· b4 - User permission levels - the On Click event of this button opens the form f_user_level on data from the table t_user_level to allow the user to add, edit or delete the permission levels - usually an administrator function

· b5 - Buttons - the On Click event of this button opens the form f_button on data from the table t_button to allow the user to add, edit or delete button permission levels - usually an administrator function

· b_close - the On Click event of this transparent button will remove the user name from t_user_logged_on and close the Application - the button sits on top of the Text71 Text box - allows the user to create any style of Exit button

· attach_from_where Text box - holds the path to the back-end database - this path is stored in the t_owner table (ordered by sort_order)
· b_attach - the On Click event of this button detaches certain tables and then attaches to all table names listed in the table t_table_name - if you wish to use a temporary table use the naming convention t_temp_[table name] - this will ensure the table does not get deleted by b_attach
· ztext and zz - these Text boxes are used to keep the user informed of the progress of any process that is running

· Goldsoft logo - leave the small logo on screen so as to warn the next developer that Goldsoft has been used to create the DB

16 Buttons - A Typical Goldsoft "module" Contents
The Buttons module is a typical Goldsoft "module" - it consists of two forms (f_button, f_filter_button), two queries (q_button, q_button_report), one report (r_button) and is attached to the two tables (t_button, t_button_del) located in the back-end database.
If you understand how Buttons works then you understand 90% of Goldsoft already. The remaining 10% is made up of report creation and Automation procedures.

Purpose of the module

The Buttons module allows the system administrator to set a permission level for any button on any form. Each user has a permission level which is set when they logon to the system. If the user permission level is below a particular button permission level then the button is disabled for the user when the form loads.

Tables

Buttons uses two tables t_button and t_button_del which are located in the back-end (both tables have the same design) - t_button holds the current records while t_button_del holds the audit trail for records which have been edited or deleted - this audit trail can be of two types last edit or every edit - the developer makes the choice by editing the code in button b_save on form f_button
The tables have the four required fields that all tables must have - button_id, cu, input_by and input_on - (button_id is specific to t_button in this example)
Queries

Buttons uses two queries q_button and q_button_report. Query q_button is based on t_button and provides the RowSource for the lb_show list box on the form f_button. Query q_button_report is a copy of q_button and provides the data for the report r_button.

The filter form f_filter_button is used to filter the records displayed in the list box lb_show on form f_button. This is why we need two queries - see the section on printing the report r_button below for further details.

Report

Buttons uses one report r_button based on the query q_button_report - this report will show the "filtered" records as they appear in list_box lb_show on form f_button (so if there are two records visible on the form then there will be two records on the report) - the developer can choose to show all records by basing the report on query q_button.

Forms

Buttons uses two forms f_button and f_filter_button. These forms are discussed in detail in the process section that follows.

16.1 Process

Contents
· the user clicks on button b5 on the Main Menu

· the form f_button is opened

· the On Open event of form f_button runs

· f_button is set as curr_form
· user is informed on screen they are in add mode

· the procedure show_buttons runs to disable any buttons the user does not have permission to use

· code that is remmed out - this is not a sub form so the sub form code remains remmed out

· code that is remmed out - there are not many records in t_button so the RowSource for lb_show and for user_level_id are not altered

16.2 To add a new record

Contents
· the user enters data into the on-screen fields - once all the data is entered the user clicks the SAVE button b_save
· all blank non mandatory number fields are set to zero

· all blank non mandatory date fields are set to Null

· a filter form (f_filter_button) is in use for the buttons module therefore the data in the list box lb_show on form f_button may be restricted - the new record may be restricted as well - therefore to avoid this potential problem the RowSource of list box lb_show is set to q_button (shows all records)

· the check_fields procedure runs - if any of the mandatory fields are not filled in the save process stops and the user is guided to the empty field - the developer uses this procedure to test any special conditions e.g. if field_a is filled in then field_b must also be filled in
· the uniqueness of the key data field(s) is checked - this can be one field (say company_name) or a combination of fields as in the Buttons example - form_name and button_name - if the entry exists the user is informed that the record cannot be added

· this is a new record so the first step is to ensure no other user is adding data to the t_button table - a search is made for the file t_button.txt in the folder where the back-end resides

if the file exists it means another user is adding a record (the user is informed of this to buy a little time - once the user clicks OK on the message box the save procedure would normally continue)

if the file t_button.txt does not exist then the file is created in the back-end folder - this effectively locks anyone else out of adding data to the table t_button
· a new record is opened via the recordset curr_rs on the table t_button

· a new button_id allocated to the record is the highest existing button_id in t_button plus one

· the new record is populated with the on_screen data and written into table t_button

· the record has been added to the table so the t_button.txt file is deleted - this allows the next user to add a record to t_button (if anyone is waiting)

· the on-screen fields are all set to Null

· the list box lb_show is requeried to show all records in t_button

· the new record is selected in lb_show - this action populates the fields on screen

· the user is informed they are in View mode

16.3 To edit an existing record

Contents
· the user selects the record to edit in the list box lb_show - this action populates the on screen fields with data

· the user is informed they are in View mode

· the user then clicks on the button b_edit
· the user is informed they are in Edit mode

· the chosen record is checked to make sure that no one else is editing or deleting the record - i.e. field cu is not populated - if cu is populated then the user is informed of this and the edit process is aborted

· the record is locked in table t_button - the cu field is set to user_name of the user - if another user wishes to edit or delete the record they can be informed that user_name has the record locked
· the record chosen is copied into the t_button_del table to provide an audit trail - this is a snapshot of the record before editing - if you wish to make this audit trail last edit then leave the code as it is - if you wish to make the audit trail every edit then alter the code - disable the rs_del.Edit function and leave the rs_del.AddNew function intact.

· most of the action buttons are now disabled - the user can only save changes or cancel the edit

· the user alters the on-screen data fields - when finished with the editing of field data the user clicks the SAVE button b_save or the Cancel edit button b_cancel_edit
· NOTE: at this point if the Cancel edit button is clicked the record is unlocked (field cu is set to Null) - all on screen controls are set to Null - the user is informed they are in Add mode and the edit process is aborted
· all blank non mandatory number fields are set to zero

· all blank non mandatory date fields are set to Null

· a filter form (f_filter_button) is in use for the buttons module therefore the data in the list box lb_show may be restricted - the new record may be restricted as well - therefore to avoid this problem the RowSource of list box lb_show is set to q_button (shows all records)

· the check_fields procedure runs - if any of the mandatory fields are not filled in the save process stops and the user is guided to the empty field - the developer uses this procedure to test any special conditions e.g. if field_a is filled in then field_b must also be filled in
· the uniqueness of the key data field(s) is checked - this can be one field (say company_name) or a combination of fields as in the Buttons example - form_name and button_name - if the entry exists (and the button_id is different from the button_id being edited) the user is informed that the record cannot be added

· the existing record is opened via the recordset curr_rs on the table t_button where button_id = the on screen field button_id
· the existing record is unlocked (field cu is set to null) populated with the on_screen data and written into table t_button

· the on-screen fields are all set to Null (the edited record can be selected and displayed on screen at this point - change the code accordingly)
· the user is advised they are in Add mode

· the list box lb_show is requeried to show all records in t_button

16.4 To delete an existing record

Contents
· the user selects the record to delete in the list box lb_show - this action populates the on screen fields with data

· the user is informed they are in View mode

· the user then clicks on the button b_delete
· the chosen record is checked to make sure that no one else is editing or deleting the record - i.e. field cu is not populated - if cu is populated then the user is informed of this and the delete process is aborted

· the record is locked in table t_button - the cu field is set to user_name of the user - if another user wishes to edit or delete the record they can be informed that user_name has the record locked

· the user is asked if they are sure they wish to delete the record - the default answer is N - if anything other than Y is answered the record is unlocked and the user is informed that the record was not deleted

· the user agrees to delete the record by answering Y
· the record chosen is copied into the t_button_del table to provide an audit trail - this is a snapshot of the record before deleting - if you wish to make this audit trail last edit then leave the code as it is - if you wish to make the audit trail every edit then alter the code - disable the rs_del.Edit function and leave the rs_del.AddNew function intact.

· optional - a check is made of any other tables which depend on the record to be deleted - if a dependency is found then the record is not deleted and the user is informed - this test usually involves one table but may involve a number of tables - e.g. if you are deleting a record form the client table t_client then you may need to check if the client_id is in the table t_orders and check in the t_invoices table
· the record is deleted and the user is informed

· the on-screen fields are all set to Null

· the user is advised they are in Add mode

16.5 Searching for records

Contents
The search button b_filter has three options - the developer alters the On Click event code to invoke one of the options

No search feature - use this option when you are only dealing with a few records (say less than 20) - unrem lines 2 and 3 of the On Click event of the b_filter button
· user gets a message that there is no search feature available
Simple search - looks for data in one or more columns of the lb_show list box - use this option if you have a simple lookup table (say a list of suburbs) - rem the two lines above '''OR out of the On Click event of the b_filter button
· user is asked to enter data to search for - this could be text, numeric or date types

· each row in the lb_show list box is searched for the data - the search may involve a number of columns which are searched one at a time

· if a match is found the record is highlighted and the search is aborted

· if the last record is reached without finding a match the user is informed

Filter form search (default) - use this option when you have a large number of records and you need to work with sets of data at a time - say a large client contact list

· the filter form f_filter_button is opened

· the user enters data into one or more of the search fields

· the user clicks on the b_close button - the b_close Click event is as follows:
· sets the RowSource of the lb_show list box on form f_button to show all records i.e. q_button
· the SQL of q_button is split into three sections hold1, hold2 and hold3

· hold1 contains the SQL code which identifies all the fields to be returned i.e. from the beginning of the SQL up to the words Order By or Where
· hold2 will contain the filter SQL i.e. the Where clause

· hold3 contains the sort portion of the SQL i.e. the Order By piece

· the Where clause is created from the populated fields on screen - this SQL is held in the variable hold - if no fields have data in them then hold = Null - you can search any field data which is exposed through q_button - i.e. if there are joined tables you can search any of the joined table fields - use the format [t_table_name].[field_name] to identify the field you are searching
· if there is a where clause in hold2 then the RowSource of the lb_show list box on form f_button is set to hold1 & hold2 & hold3 - lb_show is refreshed

· the form f_filter_button is closed
16.6 Printing the report

Contents
You have two options when printing the report

· print all data in the table (t_button in this case) - the report uses q_button as its Record Source

· If you are using a filter form (f_filter_button in this case) the report will only show the filtered records - unrem the code at the top of the b_report On Click event - base the report on q_button_report - this query will only deliver the filtered records (will deliver all the records if no filter is used)
17 The Reports form

Contents
Reports are usually created in one of two ways.

One method is to create a Query and then base a Report on that Query - this is the accepted process and so needs no discussion here except to say that it is recommended that table Relationships are NOT set up.

· Set up the Query

· Set up the Report

· Create a button on the f_report form to run the report.

The second method is by using recordsets writing to a t_temp_ table. This method is slower but the process is far more deliberate and flexible. The advantages are

1 You have total control of the data that is being collated
2 Basing a report on a single table is simple and fast

3 When you run a report you can Step Into the code and test data and calculations on the fly - Queries always leave me wondering "is that right ?"

4 Exporting the report data to Excel (or any other program) is simple - you can export the table or be far more sophisticated and populate an Excel template which you have created specifically for the report - if you need an example of writing to an Excel template complete with VBA code send an email to kenhockley@hockley.com.au
5 Modifying this type of report at a later stage is usually faster than reports based on queries.

Follow this process:

· Create a temp table to hold the data

· Populate the table using VBA code to gather the data

· Create the report and base it on the temp table

Building the report

The Reports form allows you to build a report in stages

· Create a temp table (say t_temp_client) which contains a field for each item you wish to display in the Detail section of the report (plus any other fields you may need to display in other sections) - the name must be t_temp_(something) so it does not get deleted when you run attach tables
· Open the form f_report in design mode
· Create a button to run the report from - name the button
· If the report is a from date - to date type report then copy the three events (GotFocus, LostFocus, Click) code from the From To Basic Code button (b500) and paste the code into the three events of the new button
· If the report is a as at date type report then copy the three events (GotFocus, LostFocus, Click) code from the As At Basic Code button (b501) and paste the code into the three events of the new button

· Alter the VBA code in the On Click event on your new button so that it populates the t_temp_ table.
· Create your report and base it on the t_temp_ table.

· If you need a sample report with VBA code attached email kenhockley@hockley.com.au
